ECME Thresholding Methods for Sparse Signal Reconstruction
نویسندگان
چکیده
We propose a probabilistic framework for interpreting and developing hard thresholding sparse signal reconstruction methods and present several new algorithms based on this framework. The measurements follow an underdetermined linear model, where the regression-coefficient vector is the sum of an unknown deterministic sparse signal component and a zero-mean white Gaussian component with an unknown variance. We first derive an expectation-conditional maximization either (ECME) iteration that guarantees convergence to a local maximum of the likelihood function of the unknown parameters for a given signal sparsity level. To analyze the reconstruction accuracy, we introduce the minimum sparse subspace quotient (SSQ), a more flexible measure of the sampling operator than the well-established restricted isometry property (RIP). We prove that, if the minimum SSQ is sufficiently large, ECME achieves perfect or near-optimal recovery of sparse or approximately sparse signals, respectively. We also propose a double overrelaxation (DORE) thresholding scheme for accelerating the ECME iteration. If the signal sparsity level is unknown, we introduce an unconstrained sparsity selection (USS) criterion for its selection and show that, under certain conditions, applying this criterion is equivalent to finding the sparsest solution of the underlying underdetermined linear system. Finally, we present our automatic double overrelaxation (ADORE) thresholding method that utilizes the USS criterion to select the signal sparsity level. We apply the proposed schemes to reconstruct sparse and approximately sparse signals from tomographic projections and compressive samples. Index Terms Expectation-conditional maximization either (ECME) algorithm, iterative hard thresholding, sparse signal reconstruction, sparse subspace quotient, unconstrained sparsity selection, overrelaxation.
منابع مشابه
ECME hard thresholding methods for image reconstruction from compressive samples
We propose two hard thresholding schemes for image reconstruction from compressive samples. The measurements follow an underdetermined linear model, where the regression-coefficient vector is a sum of an unknown deterministic sparse signal component and a zero-mean white Gaussian component with an unknown variance. We derived an expectation-conditional maximization either (ECME) iteration that ...
متن کاملSparse Signal Recovery via ECME Thresholding Pursuits
The emerging theory of compressive sensing CS provides a new sparse signal processing paradigm for reconstructing sparse signals from the undersampled linear measurements. Recently, numerous algorithms have been developed to solve convex optimization problems for CS sparse signal recovery. However, in some certain circumstances, greedy algorithms exhibit superior performance than convex methods...
متن کاملBlock-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients
Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...
متن کاملComparison of threshold-based algorithms for sparse signal recovery
Intensively growing approach in signal processing and acquisition, the Compressive Sensing approach, allows sparse signals to be recovered from small number of randomly acquired signal coefficients. This paper analyses some of the commonly used threshold-based algorithms for sparse signal reconstruction. Signals satisfy the conditions required by the Compressive Sensing theory. The Orthogonal M...
متن کاملIterative Methods for Sparse Signal Reconstruction from Level Crossings
This letter considers the problem of sparse signal reconstruction from the timing of its Level Crossings (LC)s. We formulate the sparse Zero Crossing (ZC) reconstruction problem in terms of a single 1-bit Compressive Sensing (CS) model. We also extend the Smoothed L0 (SL0) sparse reconstruction algorithm to the 1-bit CS framework and propose the Binary SL0 (BSL0) algorithm for iterative reconst...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1004.4880 شماره
صفحات -
تاریخ انتشار 2010